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Abstract. We examine the dependence on all gauge parameters in the example of the Abelian Higgs model
by applying a general algebraic method which roots in an extension of the usual Slavnov-Taylor identity.
This method automatically yields all information about the gauge parameter dependence of Green functions
and therefore especially allows to control the range of “good” normalization conditions. In this context we
show that the physical on-shell normalization conditions are in complete agreement with the restrictions
dictated by the enlarged Slavnov-Taylor identity and that the coupling can be fixed in an easily handleable
way on the Ward identity of local gauge invariance. As an application of the general method we also study
the Callan-Symanzik equation and the renormalization group equation of the Abelian Higgs model.

1 Introduction

The need to fix the gauge when quantizing a gauge the-
ory perturbatively introduces a set of arbitrary gauge pa-
rameters into the action. Therefore one unavoidably has
the task to control the dependence of the theory on these
gauge parameters. Especially, it has to be proven that
physical quantities indeed are gauge parameter indepen-
dent. For instance, the gauge parameter independence of
the S-matrix, already suggested in [1], was proven in [2]
for gauge theories that do not contain any massless parti-
cles due to a complete spontaneous breakdown of symme-
try. This proof, however, relies on a special set of on-shell
normalization conditions and also makes use of a rather
complicated technical tool, namely the Wilson operator
product expansion. On the other hand, looking at pure
gauge theories with massless gauge bosons, where the S-
matrix does not exist, the gauge parameter independence
of the β-functions has been shown. This, however, solely
has been achieved by explicitly refering to an invariant
renormalization scheme [3].

In the standard model of electroweak interactions the
prerequisites needed for the proofs of the examples men-
tioned above are not fulfilled due to the masslessness of the
photon and parity violation in the fermion sector. Hence
the state of the art concerning the control of gauge pa-
rameter dependence is quite unsatisfactory and the neces-
sity for having at hand a general (i.e. model- and scheme-
independent) and easily manageable tool arises. Such a
tool is given by the algebraic method first proposed in [4]
which also allows for the control of gauge parameter de-
pendence of single Green functions. As a preparatory step
for similar investigations in the standard model this gen-
eral method has been applied to the Abelian Higgs model

in [5]. But in [5] attention was restricted to the depen-
dence of the theory on one gauge parameter only. Among
other things results proven in [6] by explicitly using an in-
variant scheme and special properties of the model could
be reproduced in a model- and scheme-independent way.
The present paper, now, enlarges the considerations of [5]
to the full control of gauge parameter dependence (i.e. the
control of the dependence of the theory on all gauge pa-
rameters) and hence completes the treatment of [5] in this
sense. Again in view of the application of the algebraic
method to the rather complicated standard model, this
model containing quite a lot of gauge parameters, it seems
to be instructive and in fact necessary to completely work
out this method, applied in its full extent, in the simpler
case of the Abelian Higgs model as a preliminary. The nec-
essary prerequisites for an analogous discussion of gauge
parameter dependence in the standard model are in the
meanwhile available due to [7].

The algebraic method essentially roots in a certain
extension of the ordinary BRS transformations: All the
gauge parameters of the model now are allowed to trans-
form under BRS into Grassmann variables. It then follows
that constructing the Green functions in accordance with
this enlarged BRS invariance also automatically yields all
information about the gauge parameter dependence of the
original Green functions, some of which are also used in
the normalization conditions. Because these normalization
conditions have to be chosen in agreement with the gauge
parameter dependence of the theory (in order not to ruin,
for instance, the gauge parameter independence of the S-
matrix) we hence have at hand a powerful tool for control-
ling the range of allowed normalization conditions. In this
context it turns out that the conditions of [2] and [3] just
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build special sets of adequate normalization conditions (cf.
Sect. 5, [4], [8]).

The structure of the paper will be as follows: In a first
part (including Sects. 2–7) we enlarge the results obtained
in [5] to the case when all gauge parameters undergo BRS
transformations. This first part therefore parallels the dis-
cussion of [5]. Whenever the treatment is completely anal-
ogous to the one in [5] we will skip calculational details
and refer to [5], but nevertheless the present paper is fully
self-contained as far as the line of argument is concerned:
Hence the first part will contain a short recapitulation of
the Abelian Higgs model (Sect. 2), the method of BRS
transforming gauge parameters (Sect. 3), the general solu-
tion of the classical approximation (Sect. 4), the extension
of the restrictions found classically for some of the parame-
ters of the model to higher orders (Sect. 5) and global and
local Ward identities. In order to illustrate how far one
can get with algebraic considerations alone and to com-
plete the algebraically abstract treatment we construct in
a second part (Sects. 8, 9) parametric differential equa-
tions, namely the Callan-Symanzik equation, the renor-
malization group equation and the equation governing the
dependence of the theory on the ghost mass. In this con-
text we will also prove the gauge parameter independence
of some of the coefficient functions to all orders of the
perturbative expansion. Sect. 10 summarizes the results.

2 The Abelian Higgs model

We start with a short presentation of the Abelian Higgs
model, thereby emphasizing some aspects which will be-
come relevant in the following. The model consists of a
doublet of scalar fields ϕ = (ϕ1, ϕ2) and a gauge field
Aµ with an interaction, that breaks U(1) gauge invari-
ance spontaneously. In conventional normalization it can
be described by the classical action

Γinv =
∫ {

−1
4
FµνFµν +

1
2
(Dµϕ)(Dµϕ)

−1
8

m2
H

m2 e2
(
ϕ2

1 + 2
m

e
ϕ1 + ϕ2

2

)2
}

(2.1)

with:

Fµν ≡ ∂µAν − ∂νAµ ,

Dµϕ1 ≡ ∂µϕ1 + eAµϕ2 , (2.2)

Dµϕ2 ≡ ∂µϕ2 − eAµ

(
ϕ1 +

m

e

)
Γinv respects the discrete symmetry of charge conjugation
and U(1) symmetry, i.e. it is invariant under the U(1)
transformations:

δωAµ = ∂µω ,

δωϕ1 = −eωϕ2 , (2.3)

δωϕ2 = eω
(
ϕ1 +

m

e

)
The shift m

e of the field ϕ1 produces the mass m for the
vector field Aµ and ϕ1 is the physical Higgs field with mass

mH , whereas ϕ2 takes the role of the would-be Goldstone
boson eaten up by Aµ.

In order to quantize the model the gauge has to be
fixed. To this end we add the gauge fixing term

Γg.f. =
∫ {

1
2
ξB2 + B∂A − eB

×
(
(ϕ̂1 − ξA

m

e
)ϕ2 − ϕ̂2(ϕ1 − ξ̂A

m

e
)
)}

.(2.4)

B is an auxiliary field with δωB = 0, ξ and ξA denote the
gauge parameters1, and ξ̂A is an additional free parame-
ter of the model which will be fixed on the global Ward
identity, see Sect. 6. In (2.4) a further doublet of external
fields ϕ̂ = (ϕ̂1, ϕ̂2) has been introduced in order to allow
for a proper formulation of rigid and local symmetry in
terms of Ward identities, see [9]. Under U(1) the doublet
ϕ̂ transforms according to

δωϕ̂1 = −eωϕ̂2 , δωϕ̂2 = eω(ϕ̂1 − ξA
m

e
) . (2.5)

Of course, the gauge fixing term (2.4) violates local gauge
invariance non-trivially. To retain a symmetry one has to
further enlarge the model by introducing the Faddeev-
Popov (φπ) fields c, c̄ and to extend local gauge transfor-
mations to BRS transformations:

sAµ = ∂µc, sc = 0,
sϕ1 = −ecϕ2, sϕ2 = ec

(
ϕ1 + m

e

)
,

sc̄ = B, sB = 0,
sϕ̂i = qi, sqi = 0 , i = 1, 2,

(2.6)

where q = (q1, q2) is another doublet of external fields.
Adding the φπ-action Γφπ such that

Γg.f. + Γφπ = s

∫
c̄

{
1
2
ξB + ∂A − e (2.7)

×
(
(ϕ̂1 − ξA

m

e
)ϕ2 − ϕ̂2(ϕ1 − ξ̂A

m

e
)
)}

,

Γinv + Γg.f. + Γφπ is BRS symmetric. The BRS symme-
try is a powerful technical tool which is essential for the
proof of renormalizability and unitarity of the S-matrix.
It also defines the model in question in an implicit way
(see below).

Finally, we have to care about the non-linear BRS
transformations sϕi which are not well-defined in higher
orders of perturbation theory due to their non-linearity.
In order to circumvent this difficulty we couple these BRS
variations to external fields Yi with sYi = 0 and add an
external field part:

Γe.f. =
∫

{Y1(sϕ1) + Y2(sϕ2)} (2.8)

The complete BRS invariant classical action is now given
by:

Γcl = Γinv + Γg.f. + Γφπ + Γe.f. (2.9)

1 The t’Hooft gauge fixing term ξAm
∫

Bϕ2 is necessary
in order to avoid a non-integrable infrared singularity in the
〈ϕ2ϕ2〉 propagator



R. Häußling, S. Kappel: Complete control of gauge parameter dependence in the Abelian Higgs model 545

The BRS invariance of the theory is expressed by the
Slavnov-Taylor (ST) identity

S(Γ ) ≡
∫ {

∂µc
δΓ

δAµ
+ B

δΓ

δc̄
+

δΓ

δY

δΓ

δϕ
+ q

δΓ

δϕ̂

}
= 0 .

(2.10)
At the classical level Γ is just the classical action Γcl,
whereas at the quantum level Γ denotes the vertex func-
tional Γ = Γcl + O(h̄). It can be proven that (2.10) to-
gether with appropriate normalization conditions, invari-
ance under charge conjugation and the gauge condition
(2.4) uniquely defines the model to all orders of pertur-
bation theory. This is in contrast to the standard model
where in addition to the ST identity also rigid invariance,
a local Ward identity and some consistency relations are
needed for a full algebraic characterization of the model
[7].

In a first step one has to look for the most general,
field polynomial (i.e. classical) solution Γ gen

cl of the ST
identity (2.10) and the gauge condition (2.4) which is in-
variant under charge conjugation (for quantum numbers
see Table 1), and to prove that it coincides with Γcl after
the application of appropriate normalization conditions.
This procedure also yields information about all the free
parameters of the theory. The most general solution was
calculated in [9] and is presented in appendix A. The free
parameters in Γ gen

cl are the usual field and coupling renor-
malizations z1, z2, zA, zm, zmH

, ze,

ϕi −→ √
zi(ϕi − xiϕ̂i) , Aµ −→ √

zAAµ (2.11)
m −→ √

zmm , mH −→ √
zmH

mH , e −→ zee ,

as well as the gauge parameters ξ, ξA, the parameter µ

(see appendix A), ξ̂A (which is prescribed by the global
Ward identity, see (6.3)) and the two parameters x1, x2,
which appear in the combination

ϕ̄i = ϕi − xiϕ̂i (2.12)

that replaces ϕi in Γinv.
These parameters have to be fixed by normalization

conditions in each order of the perturbative expansion. In
the following we will choose (for reasons which will become
clear later on) physical on-shell normalization conditions:

Re Γϕ1ϕ1(p
2 = m2

H) = 0 fixes zmH

ΓT (p2 = m2) = 0 fixes zm (2.13)
Γcc̄(p2 = m2

ghost) = 0 ,

m2
ghost = ξAm2 fixes ξA

∂p2ΓT (p2 = m2) = 1 fixes zA

Re ∂p2Γϕ1ϕ1(p
2 = m2

H) = 1 fixes z1 (2.14)

∂p2Γϕ2ϕ2(p
2 = κ2) = 1 fixes z2

ΓY1q1(p
2 = κ2) = x

(0)
1 fixes x1

ΓY2q2(p
2 = κ2) = x

(0)
2 fixes x2 (2.15)

Γϕ1 = 0 fixes µ (2.16)

In (2.13), (2.14) the transversal part of the vector 2-point
function is given by:

ΓAµAν (p, −p) ≡ Γµν(p, −p) (2.17)

= (ηµν − pµpν

p2 )ΓT (p2) +
pµpν

p2 ΓL(p2)

It remains to give a normalization condition for the cou-
pling e. Preliminary (see Sects. 5, 7), we fix the coupling
on the 3-point vertex function ΓAµϕ1ϕ2 at a normalization
momentum pnorm:

∂pν
1
ΓAµϕ1ϕ2(−p1 − p2, p1, p2)

∣∣∣
{pi}=pnorm

= −ieηµν fixes ze (2.18)

It is easily checked that these normalization conditions
when applied to the tree approximation Γ gen

cl (see ap-
pendix A) exactly yield Γcl (2.9), if we set xi = 0.

3 Algebraic control of gauge parameter
dependence

We now want to turn to the proper subject of the present
paper, namely the control of gauge parameter dependence.
To this end we first observe that at the level of the clas-
sical action Γcl (2.9) the dependence on the two gauge
parameters ξ and ξA is given by two BRS variations,

∂ξΓcl = 1
2

∫
B2 = 1

2s
∫

c̄B and (3.1)

∂ξA
Γcl = m

∫ {
Bϕ2 − ec̄(ϕ1 + m

e )c
}

= m s
∫

c̄ϕ2 ,

respectively. Therefore the right hand sides of (3.1) vanish
between physical states and physical quantities (like the
S-matrix) are ξ- and ξA-independent in the tree approxi-
mation.

The question now arises whether – and if yes, how
– this statement can be extended to higher orders. In
the affirmative case we furthermore would like to use a
construction which is easily manageable and which does
not rely on the specific model and/or a specific renor-
malization scheme. Of course, if the model in question
permits a gauge-invariant regularization, such a general
approach does not seem to be necessary at first sight.
But because many models lack this property it is nev-
ertheless desirable to have in hand such a model- and
scheme-independent procedure for controlling gauge pa-
rameter dependence and to see how it works. In addition,
it will turn out that some quite general results are only
(or at least much more easily) accessible with the proposed
method.

For this purpose let us therefore allow the gauge pa-
rameters ξ and ξA to transform under BRS into Grass-
mann variables χ and χA, respectively, with φπ-charge
+1 [4]:

sξ = χ , sξA = χA , sχ = 0 = sχA (3.2)
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Table 1. Quantum numbers of the fields (ϕ̃i = ϕi, ϕ̂i)

fields Aµ B ϕ̃1 ϕ̃2 c c̄ Y1 Y2 q1 q2

dim 1 2 1 1 0 2 3 3 1 1
charge conj. - - + - - - + - + -
Qφπ 0 0 0 0 +1 -1 -1 -1 +1 +1

Hence, the ST identity modifies into:

S(Γ ) + χ∂ξΓ + χA∂ξA
Γ = 0 (3.3)

Differentiation of (3.3) with respect to χ or χA and eval-
uating the results at χ = 0 = χA leads to

− sχ=0=χA

Γ (∂χΓ )
∣∣∣
χ=0=χA

+ ∂ξΓ |χ=0=χA
= 0 ,

− sχ=0=χA

Γ (∂χA
Γ )

∣∣∣
χ=0=χA

+ ∂ξA
Γ |χ=0=χA

= 0 , (3.4)

where in the model under investigation sΓ is given by:

sΓ =
∫ {

∂c
δ

δA
+ B

δ

δc̄
+

δΓ

δY

δ

δϕ
+

δΓ

δϕ

δ

δY
+ q

δ

δϕ̂

}
+χ∂ξ + χA∂ξA

(3.5)

sΓ being – roughly speaking – the functional generaliza-
tion of s, (3.4) is nothing else but the functional analog of
(3.1) which we were looking for and which can be easily
controlled in higher orders. Therefore proving (3.3) to all
orders of perturbation theory automatically yields all in-
formation about gauge parameter dependence of the 1-PI
Green functions in an algebraic way.

4 Slavnov-Taylor identity for χ 6= 0, χA 6= 0

In accordance with the observations of the proceeding sec-
tion gauge parameter dependence is completely governed
by the χ- and χA-enlarged ST identity2:

S(Γ ) ≡
∫ {

∂µc
δΓ

δAµ
+ B

δΓ

δc̄
+

δΓ

δY

δΓ

δϕ
+ q

δΓ

δϕ̂

}
+χ∂ξΓ + χA∂ξA

Γ = 0 (4.1)

First we have to look for the general classical solution
Γ = Γ gen

cl of (4.1) in order to control the free parameters
of the theory and to learn something about their gauge
parameter dependence eventually. Because the ST iden-
tity does not prescribe the gauge fixing terms we can also
postulate the gauge condition (2.4) to hold for the (χ-
and χA-independent part of the) solution Γ of (4.1). The
gauge condition (2.4) is linear in propagating fields and
hence it can be held in this form to all orders of pertur-
bation theory.

2 From here on the symbol S collectively denotes all the dif-
ferential operators on the r.h.s. of (3.3)

Using the fact that χ and χA are Grassmann variables,
Γ can be split into four parts in the tree approximation:

Γ = Γ̂ + χQ + χAQA + χχAQχχA
(4.2)

Inserting (4.2) into the ST identity (4.1) and again mak-
ing use of χ2 = 0 = χ2

A one immediately finds that at
the classical level (4.1) is equivalent to the following four
equations:

χ0, χ0
A :

∫ {
∂µc

δΓ̂

δAµ
+ B

δΓ̂

δc̄
+

δΓ̂

δY

δΓ̂

δϕ
+ q

δΓ̂

δϕ̂

}
= 0 (4.3)

χ1, χ0
A : ∂ξΓ̂ = sχ=0=χA

Γ̂
Q (4.4)

χ0, χ1
A : ∂ξA

Γ̂ = sχ=0=χA

Γ̂
QA (4.5)

χ1, χ1
A :

∫ {
δQ

δY

δQA

δϕ
− δQA

δY

δQ

δϕ

}
− ∂ξQA + ∂ξA

Q

= sχ=0=χA

Γ̂
QχχA

(4.6)

sΓ̂ is given by (3.5) (with Γ̂ replacing Γ ).
The first of these equations is nothing else but the

(ordinary) ST identity for χ = 0 = χA which has been
studied in [9] and the general solution of which – needed
for the calculation of Q and QA – is presented in appendix
A.

Furthermore, (4.2) implies that Q, QA and QχχA
have

dimension less than or equal to four and are even under
charge conjugation and that Q as well as QA carry φπ-
charge −1 whereas QχχA

has φπ-charge −2. Due to the
quantum numbers of QχχA

there are no terms contributing
to QχχA

(see table of quantum numbers):

QχχA
≡ 0 (4.7)

For Q, QA one has to choose the most general ansatz com-
patible with the quantum numbers, see [5], and to insert
these expressions into (4.4), (4.5). After a straightforward
calculation one finds (Q(A) = Q, QA):

Q(A) = Qe.f.(A) + Qφπ,1(A) + Qφπ,2(A) (4.8)

with (x(0)
1 = x

(0)
2 ≡ x (see (6.3)) and ϕ̄i = ϕi − xϕ̂i):

Qe.f.(A) =
∫ {

1
4
(∂ξ(A) lnz1 + ∂ξ(A) lnz2)(Y1ϕ̄1 + Y2ϕ̄2)

+
1
4
(∂ξ(A) lnz1 − ∂ξ(A) lnz2)(Y1ϕ̄1 − Y2ϕ̄2)

−∂ξ(A)x(Y1ϕ̂1 + Y2ϕ̂2)
}

(4.9)
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Qφπ,1(A) =
∫ {

−1
4
ec̄(∂ξ(A) lnz1 + ∂ξ(A) lnz2)

×
(

(ϕ̄1 +
√

zm√
z1ze

m

e
)ϕ̂2 − ϕ̄2(ϕ̂1 − ξA

m

e
)
)

−1
4
ec̄(∂ξ(A) lnz1 − ∂ξ(A) lnz2)

×
(

(ϕ̄1 +
√

zm√
z1ze

m

e
)ϕ̂2 + ϕ̄2(ϕ̂1 − ξA

m

e
)
)}

(4.10)

Qφπ,2 =
1
2

∫
c̄B (4.11)

Qφπ,2 A = m

∫
c̄ϕ̄2 (4.12)

Please note that with (4.8) (4.6) is fulfilled automatically.
Hence the coefficients in Q and QA are completely de-

termined as functions of the parameters z1, z2, zm, ze and
x which appear in the general solution of the ST identity
for χ = 0 = χA. But the χ- and χA-enlarged ST iden-
tity does not only fully fix Q and QA; in addition (4.4),
(4.5) force some of the free parameters to be both ξ- and
ξA-independent:

∂ξze = 0 = ∂ξA
ze , ∂ξzA = 0 = ∂ξA

zA ,

∂ξzm = 0 = ∂ξA
zm , ∂ξzmH

= 0 = ∂ξA
zmH

,

∂ξµ
2 = 0 = ∂ξA

µ2 (4.13)

In contrast to this the wave function renormalizations
z1, z2 and x can be arbitrary functions of ξ and ξA.

Two remarks are of some relevance at this point:
The (physical) normalization conditions given in Sect. 2
trivially fulfil the constraints (4.13) in the tree approxi-
mation. In higher orders of perturbation theory, however,
the constraints (4.13) will extend to restrictions of the
ξ- and ξA-dependence of some non-local Green functions
(the subject of the next section) which are also used in the
normalization conditions and the splitting of which into
ξ(ξA)-dependent and ξ(ξA)-independent parts is much less
transparent. Hence some care is needed in order not to in-
troduce wrong gauge parameter dependence into the the-
ory, i.e. it has to be proven explicitly that the normaliza-
tion conditions chosen are in agreement with the restric-
tions (4.13) extended to higher orders.

The second remark concerns the t‘Hooft gauge

ξA = ξ (4.14)

which seems to be excluded in the present treatment be-
cause ξ and ξA are viewed as being independent gauge
parameters. But with the following recipe it is neverthe-
less possible to make a transition from the general to the
t‘Hooft case:

– Set ∂ξA
equal to zero in all places of occurence, this

partial derivative having already been taken into ac-
count in the t‘Hooft gauge via sξ = χ

– Take then χA = χ

It is easily seen that this procedure leads to the correct
results.

5 Gauge parameter dependence of Green
functions

The next step would be the proof of the χ- and χA-
dependent ST identity (4.1) to all orders of perturbation
theory. We will not present the detailed proof here but
instead refer to [4] where it was shown that the proof of
the enlarged ST identity (χ 6= 0, χA 6= 0) can be reduced
to the proof of the ordinary ST identity (χ = 0 = χA):
The only possible obstruction to the validity of the ST
identity would be the presence of anomalies which, how-
ever, are absent in the Abelian Higgs model. Hence we can
acchieve

S(Γ ) = 0 (5.1)

also in the case of BRS transforming gauge parameters ξ
and ξA, namely by an appropriate choice of counterterms.
Γ now denotes the generating functional of 1-PI Green
functions. Accordingly the validity of (5.1) will be assumed
throughout the following.

We now want to comment on the extensions of the con-
straints (4.13) to higher orders3. The fundamental starting
point for all considerations that follow are the equations
(3.4) which have to be differentiated with respect to suit-
able fields and finally evaluated for all fields equal to zero.
Because this discussion again parallels the analogous dis-
cussion of [5] for one BRS transforming gauge parameter
we skip the details of the calculations here and only sum-
marize the results.

The continuation of the ξ- and ξA-independence of µ2

to higher orders is obtained by differentiating (3.4) once
with respect to ϕ1; the final answer is that ΓY1 has to be
χ- and χA-independent to all orders of the perturbative
expansion:

∂χΓY1 = 0 and ∂χA
ΓY1 = 0 (5.2)

Classically, ∂ξzA = 0 = ∂ξA
zA and ∂ξzm = 0 = ∂ξA

zm im-
ply that the transversal part of the vector 2-point function
is completely gauge parameter independent. The algebraic
method now allows to prove in a simple way that this
statement holds true to all orders of perturbation theory,

∂ξΓ
T
AµAν

= 0 and ∂ξA
ΓT

AµAν
= 0 . (5.3)

(To see this one has to differentiate (3.4) with respect to
Aµ, Aν and to use an argument concerning Lorentz invari-
ance.)

The extension of ∂ξzmH
= 0 = ∂ξA

zmH
to higher or-

ders, resulting from differentiating (3.4) twice with respect
to ϕ1, leads to

∂χ(A)ΓY1ϕ1(p
2) Γϕ1ϕ1(p

2) = −∂ξ(A)Γϕ1ϕ1(p
2) . (5.4)

Equation (5.4) completely governs the ξ- and ξA-depen-
dence of the Higgs self-energy, this dependence not being
trivial at all due to the existence of non-trivial insertions
of the vertices χc̄B and χAmc̄ϕ2 into the vertex function
ΓY1ϕ1 .

3 In this context we will restrict ourselfes to the case of a
stable Higgs particle, i.e. m2

H < 4m2
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In each of the cases above it is easy but nevertheless
necessary to show that the on-shell normalization condi-
tions are “good” normalization conditions, i.e. that they
are in agreement with the constraints dictated by the χ-
and χA-enlarged ST identity.

Finally, ∂ξze = 0 = ∂ξA
ze is extended to higher or-

ders by differentiating (3.4) with respect to Aµ, ϕ1, ϕ2.
This leads to two highly non-trivial equations which com-
pletely determine the ξ- and ξA-dependence of ΓAµϕ1ϕ2 .
If the coupling is to be fixed directly with the help of
ΓAµϕ1ϕ2 (see (2.18)) one has the quite cumbersome task
to introduce two additional reference points ξ0 and ξA0 in
order to fix the ξ- and ξA-independent part of ΓAµϕ1ϕ2 and
to explicitly control the gauge parameter dependence of
ΓAµϕ1ϕ2 via the enlarged ST identity. However, in Sect. 7
we will propose a much easier possibility for fixing the
coupling by using the local Ward identity.

6 Rigid invariance

In [9] it was proven that the χ- and χA-independent part
of the generating functional of 1-PI Green functions obeys
a Ward identity (WI) of rigid symmetry to all orders of
perturbation theory,

Ŵ gen Γ |χ=0=χA
= 0 , (6.1)

where Ŵ gen denotes the (deformed) Ward operator:

Ŵ gen ≡
∫ {

−z−1ϕ2
δ

δϕ1
+ z(ϕ1 − ξ̂A

m

e
)

× δ

δϕ2
− zY2

δ

δY1
+ z−1Y1

δ

δY2

−z−1ϕ̂2
δ

δϕ̂1
+ z(ϕ̂1 − ξA

m

e
)

× δ

δϕ̂2
− z−1q2

δ

δq1
+ zq1

δ

δq2

}
(6.2)

The appearance of a deformed Ward operator is due to
the fact that physical on-shell normalization conditions
(which are “good” normalization conditions, see Sect. 5)
have been used. In other words: The WI (6.1) does not
prescribe the values of z and ξA, instead these param-
eters are fixed uniquely by explicit normalization condi-
tions, namely the normalization conditions imposed on the
residua of the Higgs and Goldstone field (2.14) and the
mass normalization of the ghosts and the Higgs (2.13).
Nevertheless, (6.1) restricts some other parameters at the
classical level:

x
(0)
1 = x

(0)
2 ≡ x , ξ̂A = −1 + xξA (6.3)

Now we are going to study the modifications of (6.1) when
BRS transforming gauge parameters ξ and ξA are
included.

Just as in the case of one BRS transforming gauge pa-
rameter [5] the application of Ŵ gen (6.2) to the general
solution Γ gen

cl (4.2) of the ST identity (4.1) leads to terms

which are non-linear in the propagating fields and there-
fore not well-defined in higher orders. In order to overcome
this difficulty these terms have to be absorbed into func-
tional operators χV gen and χAV gen

A extending Ŵ gen (see
[5]). An easy calculation then proves that the χ- and χA-
enlarged Ward-operator

W gen = Ŵ gen + χV gen + χAV gen
A , (6.4)

with

V gen
(A) = ∂ξ(A)

∫ {
z(ϕ̂1 − ξA

m

e
)

δ

δq2
− z−1ϕ̂2

δ

δq1

}
, (6.5)

when acting on Γ gen
cl , only leads to terms linear in the

propagating fields:

W genΓ gen
cl = χ∆br + χA∆brA

, (6.6)

∆br(A) = ∂ξ(A)

∫ {
z−1Y1ϕ2 − zY2(ϕ1 − ξ̂A

m

e
)
}

(6.7)

Next it has to be proven that the WI (6.6) is valid to all
orders of perturbation theory:

W genΓ = χ∆br + χA∆brA
, (6.8)

where Γ now denotes the generating functional of 1-PI
Green functions.

This proof only relies on the quantum action principle
and BRS invariance and hence it is scheme-independent.
But because this proof completely parallels the proof given
in [5] for one BRS transforming gauge parameter, we skip
it here and refer the interested reader to [5].

7 The local Ward identity

We conclude the first part of the present paper, which
extends the results of [5] to the case when all gauge pa-
rameters of the model undergo BRS transformations by
looking at the local Ward identity. This local WI governs
the invariance of Green functions under (deformed) local
gauge transformations and also yields information about
the ξ- and ξA-dependence of these Green functions. We
again start with the local WI as it was proven in [9] for
χ = 0 = χA to all orders of perturbation theory,(

(e + δe)wgen(x) − ∂µ
δ

δAµ

)
Γ

∣∣∣∣
χ=0=χA

= utB , (7.1)

and then generalize to χ 6= 0 and χA 6= 0. In (7.1) wgen(x)
denotes the (χ- and χA-dependent) local Ward operator
which is obtained from the global one (6.4) by taking away
the integration,

W gen =
∫

d4x wgen(x) , (7.2)

and δe – to be fixed by the normalization condition for
the coupling – is of order h̄.
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In the classical approximation a straightforward calcu-
lation shows that the following local WI holds true:

(ewgen(x)−∂µ
δ

δAµ
)Γ gen

cl = utB +eχDbr(x)+eχADbrA
(x)

(7.3)
Dbr(x) and DbrA

(x) are the non-integrated breaking terms
∆br and ∆brA

(6.7), respectively:

∆br(A) =
∫

d4x Dbr(A)(x) (7.4)

In order to proceed to higher orders one has to make use
of the same two, general, ingredients which allow for the
proof of the global WI, namely the action principle and
the transformation behaviour of the local Ward operator
wgen(x) (7.2) under BRS transformations. Again, this dis-
cussion copies the one given in [5] for one BRS transform-
ing gauge parameter and hence we refer to [5] for details.

The final result of that discussion is that the following
χ- and χA-dependent local WI holds true to all orders of
the perturbation theory:(

(e + δe)wgen(x) − ∂µ
δ

δAµ

)
Γ

= utB + (e + δe)χDbr(x)
+(e + δe)χADbrA

(x) (7.5)

In addition the detailed proof shows that the overall nor-
malization factor of the matter transformations has to be
ξ- and ξA-independent in all orders of the perturbative
expansion:

∂ξ(e + δe) = 0 = ∂ξA
(e + δe) (7.6)

This result is highly non-trivial and can be obtained in this
generality only with the formalism of BRS transforming
gauge parameters.

But, having proven (7.6) we have at hand a new pos-
sibility for fixing the coupling: Following the line of argu-
ment, the normalization condition for the coupling has to
respect the ξ- and ξA-independence of the factor e + δe.
This is trivially fulfilled if we demand δe = 0, i.e. if we re-
quire the local WI to be exact to all orders of perturbation
theory:(

ewgen(x) − ∂µ
δ

δAµ

)
Γ

∣∣∣∣
χ=0=χA

= utB (7.7)

The normalization condition (7.7) (replacing (2.18)) is
much easier manageable in concrete calculations.

In summary, we have shown that the on-shell normal-
ization conditions taken together with the requirement
“local WI exact to all orders” are in agreement with the
χ- and χA-enlarged ST identity and hence guarantee a
correct treatment of full gauge parameter dependence in
explicit calculations.

8 BRS-symmetric insertions

As an application of the general formalism developed so
far we want to study parametric differential equations of

the type
λ∂λΓ = ∆λ · Γ (8.1)

in the next section, where λ denotes a (set of) param-
eter(s) of the theory. Due to the action principle ∆λ is
an insertion of dimension less than or equal to four, even
under charge conjugation and BRS invariant. This last
property holds because of

0 = λ∂λS(Γ ) = sΓ (λ∂λΓ ) = sΓ (∆λ · Γ )
= sΓcl

∆λ + O(h̄) (8.2)

for λ being independent of ξ and ξA. Therefore, as a
preparatory step we first have to classify all BRS-symmet-
ric insertions, which carry the same quantum numbers as
Γ . Because in the present paper we are mainly interested
in questions concerning gauge parameter dependence we
will pay special attention to the appearing of ξ- and ξA-
dependence.

In order to solve the cohomological problem mentioned
above we once more return to the classical level and write
down all independent field polynomials fulfilling

sΓcl
∆λ = 0 . (8.3)

Then we have to translate these polynomials to BRS-
invariant operators, only this last representation being
valid to all orders of perturbation theory. Because the so-
lution of this problem for χ = 0 = χA was already given
in [9] we will make use of the following trick to handle the
modifications for χ 6= 0, χA 6= 0:

First we decompose ∆λ into three parts by explicitly
separating χ- and χA-dependence:

∆λ = ∆0
λ + χ∆−

λ + χA∆−
A,λ (8.4)

(Please note that due to the quantum numbers of ∆λ no
term proportional to χχA can appear.)

Splitting Γcl = Γ̂cl + χQ + χAQA and sΓcl
in the same

way,

sΓcl
= sχ=0=χA

Γ̂cl
+ χ(∂ξ + O)

+χA(∂ξA
+ OA) , (8.5)

with O =
∫ {

δQ

δϕ

δ

δY
− δQ

δY

δ

δϕ

}
,

OA =
∫ {

δQA

δϕ

δ

δY
− δQA

δY

δ

δϕ

}
,

we find that (8.3) is equivalent to the following four equa-
tions:

sχ=0=χA

Γ̂cl
∆0

λ = 0 (8.6)

sχ=0=χA

Γ̂cl
∆−

λ = (∂ξ + O)∆0
λ (8.7)

sχ=0=χA

Γ̂cl
∆−

A,λ = (∂ξA
+ OA)∆0

λ (8.8)

(∂ξ + O)∆−
A,λ = (∂ξA

+ OA)∆−
λ (8.9)

Now it is easy to see that it is always possible to find a
∆̂−

λ such that:

∆−
λ = (∂ξ +O)∆̂−

λ and ∆−
A,λ = (∂ξA

+OA)∆̂−
λ (8.10)
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We remark that due to (8.10) (8.9) is fulfilled automati-
cally.

With these preparations we have

(∂ξ + O)(∆0
λ − sχ=0=χA

Γ̂cl
∆̂−

λ )

= sχ=0=χA

Γ̂cl
∆−

λ − (∂ξ + O)sχ=0=χA

Γ̂cl
∆̂−

λ

= sχ=0=χA

Γ̂cl
∆−

λ − sχ=0=χA

Γ̂cl
(∂ξ + O)∆̂−

λ

= 0 (8.11)

and in the same way

(∂ξA
+ OA)(∆0

λ − sχ=0=χA

Γ̂cl
∆̂−

λ ) = 0 . (8.12)

But that means

∆0
λ = sχ=0=χA

Γ̂cl
∆̂−

λ + ∆̂0
λ (8.13)

with
(∂ξ + O)∆̂0

λ = 0 = (∂ξA
+ OA)∆̂0

λ (8.14)

and
sχ=0=χA

Γ̂cl
∆̂0

λ = 0 . (8.15)

Hence:

∆λ = ∆0
λ + χ∆−

λ + χA∆−
A,λ

= sχ=0=χA

Γ̂cl
∆̂−

λ + ∆̂0
λ + χ(∂ξ + O)∆̂−

λ

+χA(∂ξA
+ OA)∆̂−

λ

= ∆̂0
λ + sΓcl

∆̂−
λ (8.16)

As already mentioned, the solution of (8.15) was presented
in [9] and we just give the list of terms contributing to ∆̂0

λ
in appendix B. The crucial point in this context is, how-
ever: A short calculation starting from (8.14) shows that
all terms in ∆̂0

λ which are no BRS variations, namely4,∫
δΓ̂cl

δϕ̂0
,

∫ {
A

δ

δA
+ c

δ

δc

}
Γ̂cl , mH∂mH

Γ̂cl , e∂eΓ̂cl ,

(8.17)
have to appear with coefficients which are independent of
ξ and ξA.

For ∆̂−
λ we choose the most general ansatz compatible

with the quantum numbers of ∆̂−
λ (φπ-charge: -1, C: +,

dim: ≤ 4); in view of the generalization to higher orders,
this ansatz can be brought into the form:

∆̂−
λ :

∫
Y1,

δΓ̂cl

δq1
, c̄ϕ̂2, (8.18)

Y1ϕ1, Y1ϕ̂1, Y2ϕ2, Y2ϕ̂2, c̄
δΓ̂cl

δB
, ϕ̂i

δΓ̂cl

δqi
, c̄ϕ̂1ϕ̂2, c̄B

Looking to (B.1) – (B.4) and (8.16), we find that all terms
in ∆̂0

λ which are BRS variations have to be modified when

4 The definition of the additional external field ϕ̂0 is also
given in Appendix B

BRS transforming gauge parameters are included. There-
fore we finally end up with the following basis of BRS
invariant insertions which we directly give in the form of
BRS invariant operators (i = 1, 2):

fs,0

∫
δΓ

δϕ1
+ (χ∂ξ + χA∂ξA

)fs,0

∫
Y1

= sΓ (fs,0

∫
Y1)

f̂s,0

∫
δΓ

δϕ̂1
+ [(χ∂ξ + χA∂ξA

)f̂s,0]
∫

δΓ

δq1

= sΓ (f̂s,0

∫
δΓ

δq1
)

f̃3

∫
{Bϕ̂2 − c̄q2} + (χ∂ξ + χA∂ξA

)f̃3

∫
c̄ϕ̂2

= sΓ (f̃3

∫
c̄ϕ̂2) (8.19)

N (χ,χA)
s,i Γ ≡ fs,i

∫ {
ϕi

δ

δϕi
− Yi

δ

δYi

}
Γ

+(χ∂ξ + χA∂ξA
)fs,i

∫
Yiϕi

= sΓ (fs,i

∫
Yiϕi)

N̂ (χ,χA)
s,i Γ ≡ f̂s,i

∫ {
qi

δ

δqi
+ ϕ̂i

δ

δϕ̂i

}
Γ

+[(χ∂ξ + χA∂ξA
)f̂s,i]

∫
ϕ̂i

δΓ

δqi

= sΓ (f̂s,i

∫
ϕ̂i

δΓ

δqi
)

N̄ (χ,χA)
s,i Γ ≡ f̄s,i

∫ {
ϕ̂i

δΓ

δϕi
− Yiqi

}
+(χ∂ξ + χA∂ξA

)f̄s,i

∫
Yiϕ̂i

= sΓ (f̄s,i

∫
Yiϕ̂i)

N (χ,χA)
B Γ ≡ fB

∫ {
B

δ

δB
+ c̄

δ

δc̄

}
Γ

+[(χ∂ξ + χA∂ξA
)fB ]

∫
c̄
δΓ

δB

= sΓ (fB

∫
c̄
δΓ

δB
)

f̃4

∫
{Bϕ̂1ϕ̂2 − c̄q1ϕ̂2 − c̄ϕ̂1q2}

+(χ∂ξ + χA∂ξA
)f̃4

∫
c̄ϕ̂1ϕ̂2

= sΓ (f̃4

∫
c̄ϕ̂1ϕ̂2)

fξ∂ξΓ + [(χ∂ξ + χA∂ξA
)fξ]∂χΓ

= sΓ (fξ∂χΓ ) (8.20)

In addition there are the BRS symmetric operators from
(8.17) (with Γ̂cl replaced by Γ ).
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9 Parametric differential equations

Having finished the preparatory considerations dealing
with the BRS symmetric insertions we now can turn to the
derivation of some partial differential equations, namely
the Callan-Symanzik (CS) equation and the renormaliza-
tion group (RG) equation. We will also comment about
the dependence of the theory on the ghost mass which
is governed by the differential operator ξA∂ξA

due to the
normalization condition (2.13).

9.1 CS equation

The CS equation describes the response of the system to
the scaling of all independent parameters carrying dimen-
sion of mass. In the model under investigation the CS
operator is hence given by

m∂m ≡ m∂m + mH∂mH
+ κ∂κ (9.1)

and we have the task to construct the r.h.s. of m∂mΓ = ?
which according to the action principle

m∂mΓ = ∆m · Γ (9.2)

has to be an insertion with dimension less than or equal
to four, even under charge conjugation and also BRS in-
variant. (I.e. m∂m is an operator of the type λ∂λ discussed
in the previous section.) In [9] it was shown that in order
to construct a unique r.h.s. of the CS equation rigid in-
variance has to be used, too. Therefore we next calculate
the commutator of the χ- and χA-enlarged global Ward
operator (6.4) and m∂m:

[W gen, m∂m] = z

∫ {
ξ̂A

m

e

δ

δϕ2
+ ξA

m

e

δ

δϕ̂2

}
+(χ∂ξ + χA∂ξA

)zξA
m

e

∫
δ

δq2
(9.3)

In order to make the line of argument as transparent
as possible and to explicitly work out what is needed in
the following we introduce the W gen-symmetric extension
m∂̃m of m∂m originating from (9.3),

m∂̃m ≡ m∂m + ξ̂A
m

e

∫
δ

δϕ1
+ ξA

m

e

∫
δ

δϕ̂1

+(χ∂ξ + χA∂ξA
)ξA

m

e

∫
δ

δq1
, (9.4)

[W gen, m∂̃m] = 0 , (9.5)

and consider the insertion m∂̃mΓ = ∆̃m · Γ instead of
m∂mΓ = ∆m · Γ . Due to (9.5) we have:

W gen(∆̃m · Γ ) = m∂̃mW genΓ

= m∂̃m(χ∆br + χA∆brA
)

= z(χ∂ξ + χA∂ξA
)ξ̂A

m

e

∫
Y2 (9.6)

Please note that the application of W gen to the term

−(χ∂ξ + χA∂ξA
)ξ̂A

m

e

∫
Y1 , (9.7)

this term being part of the first insertion in (8.19), ex-
actly cancels the r.h.s. of (9.6). Therefore, all other BRS
symmetric5 insertions building up ∆̃m ·Γ have to be sym-
metrized with respect to W gen: Only in this W gen-sym-
metrized form they can contribute to the r.h.s. of the CS
equation. For some of the operators in (8.17), (8.19), (8.20)
(namely the (χ- and χA-enlarged) leg counting operators)
this symmetrization can be achieved easily:

N (χ,χA)
s Γ ≡ fsNsΓ − fsξ̂A

m

e

∫
δΓ

δϕ1

+(χ∂ξ + χA∂ξA
)fs

×
∫ {

Y1(ϕ1 − ξ̂A
m

e
) + Y2ϕ2

}
,

N̂ (χ,χA)
s ≡ f̂sN̂s − f̂sξA

m

e

∫
δ

δϕ̂1

+(χ∂ξ + χA∂ξA
)f̂s

×
∫ {

(ϕ̂1 − ξA
m

e
)

δ

δq1
+ ϕ̂2

δ

δq2

}
,

NA ≡
∫ {

A
δ

δA
+ c

δ

δc

}
,

N (χ,χA)
B ≡ fBNB + (χ∂ξ + χA∂ξA

)fB

∫
c̄

δ

δB
(9.8)

The mixed operators containing ϕ̂i
δΓ
δϕi

are symmetrized
like the leg counting operators:

N̄ (χ,χA)
s Γ (9.9)

≡ f̄sN̄sΓ − f̄sξA
m

e

∫
δΓ

δϕ1
+ f̄s

∫
{q1Y1 + q2Y2}

+(χ∂ξ + χA∂ξA
)f̄s

∫ {
Y1(ϕ̂1 − ξA

m

e
) + Y2ϕ̂2

}
In (9.8), (9.9) we have introduced the usual leg counting
operators:

Ns ≡
∫ {

ϕ1
δ

δϕ1
+ ϕ2

δ

δϕ2
− Y1

δ

δY1
− Y2

δ

δY2

}
,

N̂s ≡
∫ {

ϕ̂1
δ

δϕ̂1
+ ϕ̂2

δ

δϕ̂2
+ q1

δ

δq1
+ q2

δ

δq2

}
,

N̄s ≡
∫ {

ϕ̂1
δ

δϕ1
+ ϕ̂2

δ

δϕ2

}
,

NB ≡
∫ {

B
δ

δB
+ c̄

δ

δc̄

}
(9.10)

To find the W gen-symmetric extensions of the differential
operators mH∂mH

, e∂e and the operator containing ∂ξ

5 The operators extending m∂m in (9.4) taken together with
(9.7) (times −1) just constitute the first two BRS symmetric
insertions in (8.19); hence the remaining contributions to ∆̃m ·
Γ have to be BRS symmetric
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(see last line of (8.20)),

mH∂mH
→ mH ∂̃mH

, e∂e → e∂̃e ,

fξ∂ξ + (χ∂ξ + χA∂ξA
)fξ∂χ → ∂̃ξ , (9.11)

indeed requires some calculation. The final expressions be-
ing rather lengthy we present the explicit results of the
symmetrization in Appendix C.

Finally we observe that the insertion δ
δϕ̂0

already is
W gen-symmetric and that the remaining two insertions in
(8.19), (8.20) cannot be extended in a W gen-symmetric
way.

Thus the final answer is: (9.8), (9.9), (C.5) and δ
δϕ̂0

provide a basis of BRS symmetric and rigidly invariant
operators which are even under charge conjugation and
have dimension less than or equal to four. Hence the in-
sertion ∆̃m · Γ can be decomposed as follows:

C̃Γ ≡
(
m∂̃m + βee∂̃e + βmH

mH ∂̃mH
+ β̃ξ∂̃ξ

−γ̃sN (χ,χA)
s − ˜̂γsN̂ (χ,χA)

s − ˜̄γsN̄ (χ,χA)
s

−γANA − γ̃BN (χ,χA)
B − αinv

∫
δϕ̂0

)
Γ

= −(χ∂ξ + χA∂ξA
)ξ̂A

m

e

∫
Y1 (9.12)

Equation (9.12) is the CS equation in the manifestly
W gen-symmetric form. The important result in our con-
text is that the β-functions βe and βmH

as well as the
anomalous dimension γA and αinv are independent of both
the gauge parameters ξ and ξA to all orders of perturba-
tion theory. The coefficient functions β̃ξ, γ̃s, ˜̂γs, ˜̄γs, γ̃B also
are ξ- and ξA-independent, but the usual (i.e. complete)
β- and γ-functions

βξξ = β̃ξfξ , γs = γ̃sfs , γ̂s = ˜̂γsf̂s ,

γ̄s = ˜̄γsf̄s , γB = γ̃BfB (9.13)

a priori may depend on both the gauge parameters ξ and
ξA through the factors f(s,ξ)(ξ, ξA) appearing in the leg
counting operators N (χ,χA)

s (9.8), (9.9) and in ∂̃ξ (C.5).
So far one can get with symmetry considerations alone.

If additional information about the coefficient functions is
requested one has to test (9.12) on the gauge condition
(2.4), to make use of the local WI (7.5) and/or to carry out
explicit calculations: Testing (9.12) on the gauge condition
(2.4) we find

γB = −γA (9.14)
βξ = 2γB = −2γA

βe + γA − γs − γ̂s = (βee∂e + βmH
mH∂mH

− 2γAξ∂ξ)lnz

and hence also γB and βξ are completely gauge parameter-
independent to all orders. Furthermore, using the validity
of the local WI (7.5) and the normalization condition for
the coupling (7.7) yields (see [9] for details):

γA = βe (9.15)

We want to conclude this subsection by rewriting the CS
equation in its much more convenient form which sepa-
rates the hard and soft breaking on the left and right hand
side of the CS equation:(

m∂m + βee∂e + βmH
mH∂mH

− γsNs

−γ̂sN̂s − γ̄sN̄s − βe(NA − NB + 2ξ∂ξ)

−γ1

∫ {
ϕ1

δ

δϕ1
− Y1

δ

δY1
+ ϕ̂1

δ

δϕ̂1
+ q1

δ

δq1

}
−(χ∂ξ + χA∂ξA

)
∫ {

−γsϕ̂1
δ

δq1
+ γ̂sϕ̂2

δ

δq2

}
−2βeχ∂χ

)
Γ

= −m

e

∫ {
(ξ̂A + α1)

δ

δϕ1
+ (ξA + α̂1)

δ

δϕ̂1

−αinv
e

m

δ

δϕ̂0
+ (χ∂ξ + χA∂ξA

)(ξA + α̂1)
δ

δq1

}
Γ

+γ̄s

∫
{q1Y1 + q2Y2}

+(χ∂ξ + χA∂ξA
)
∫ {

(γs + γ1)Y1ϕ1 + γsY2ϕ2

−m

e
(ξ̂A + α1)Y1 + γ̄s(Y1ϕ̂1 + Y2ϕ̂2)

}
(9.16)

with

γ1 = (βee∂e + βmH
mH∂mH

− 2βeξ∂ξ)lnz

= O(h̄2)
γ̂s = 2βe − γs − γ1

α1 = (γ1 + γs − βe)ξ̂A + γ̄sξA

+(βee∂e + βmH
mH∂mH

− 2βeξ∂ξ)ξ̂A

α̂1 = (γ1 + γ̂s − βe)ξA (9.17)

In (9.16), (9.17) we have already incorporated the rela-
tions (9.14) and (9.15). Therefore only the coefficient func-
tions βe, βmH

, γs, γ̄s and the coefficient αinv = 1
2m2

H +
O(h̄) of the soft insertion

∫
δϕ̂0 turn out to be indepen-

dent and have to be determined by explicit calculations
(see [9]).

9.2 Dependence on the ghost mass

Due to the normalization condition (2.13) the dependence
of the theory on the ghost mass is encoded in the differ-
ential operator ξA∂ξA

and we have to analyse the r.h.s.
of ξA∂ξA

Γ = ?. This analysis almost completely paral-
lels the analysis of the CS equation, but with one minor
change: Instead of (8.2) we now have:

0 = ξA∂ξA
S(Γ ) = sΓ (ξA∂ξA

Γ ) − χA∂ξA
Γ (9.18)

However, differentiating the ST identity with respect to
χA we find

sΓ (∂χA
Γ ) = ∂ξA

Γ (9.19)
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Hence the action principle, (9.18) and (9.19) imply that

(ξA∂ξA
+ χA∂χA

)Γ = ∆ξA
· Γ , (9.20)

where ∆ξA
· Γ is a BRS symmetric insertion. But due to

sΓ (ξA∂χA
Γ ) = (sΓ ξA)∂χA

Γ + ξAsΓ (∂χA
Γ )

= χA∂χA
Γ + ξA∂ξA

Γ (9.21)

∆ξA
· Γ also has to be a BRS variation and hence only

BRS variations can contribute to ∆ξA
· Γ . From here on

the discussion is completely analogous to the discussion of
the CS equation; we skip the details and just present the
result:(

ξA∂̃ξA
+ χA∂χA

+ β̃ξA

ξ ∂̃ξ − γ̃ξA
s N (χ,χA)

s

−˜̂γ
ξA

s N̂ (χ,χA)
s − ˜̄γξA

s N̄ (χ,χA)
s − γ̃ξA

B N (χ,χA)
B

)
Γ

= (χ∂ξ + χA∂ξA
) z−1 ξA∂ξA

∫
zY1(ϕ1 − ξ̂A

m

e
) (9.22)

In (9.22) ξA∂̃ξA
is the W gen-symmetric extension of ξA∂ξA

and given by:

ξA∂̃ξA
≡ ξA∂ξA

− z−1 ξA∂ξA

∫
z

{
(ϕ1 − ξ̂A

m

e
)

δ

δϕ1

+(ϕ̂1 − ξA
m

e
)

δ

δϕ̂1
− Y1

δ

δY1
+ q1

δ

δq1

}
(9.23)

−(χ∂ξ + χA∂ξA
) z−1 ξA∂ξA

∫
z(ϕ̂1 − ξA

m

e
)

δ

δq1

Introducing the “real” β- and γ-functions like in (9.13)
the test of (9.22) on the gauge condition (2.4) yields:

γξA

B = 0

βξA

ξ = 2γξA

B = 0 (9.24)

−γξA
s − γ̂ξA

s − γξA

B = (ξA∂ξA
+ βξA

ξ ξ∂ξ)lnz

⇔ γ̂ξA
s = −γξA

s − ξA∂ξA
lnz

Again, we can separate in (9.22) the hard and soft break-
ing on the left and right hand side; thereby using (9.24)
we end up with the following form, which for brevity we
only give for all external fields set equal to zero:(

ξA∂ξA
+ χA∂χA

− γξA
s Ns − γ̂ξA

s N̂s

−γ̄ξA
s N̄s − ξA∂ξA

lnz

∫
ϕ1

δ

δϕ1

)
Γ

∣∣∣∣
ext.f.≡0

= −m

e

∫ {
α

δ

δϕ1
+ ξA(1 − γξA

s )
δ

δϕ̂1

+(χ∂ξ + χA∂ξA
)ξA(1 − γξA

s )
δ

δq1

}
Γ

∣∣∣∣
ext.f.≡0

(9.25)

with

α = −γ̂ξA
s ξ̂A + γ̄ξA

s ξA + ξA∂ξA
ξ̂A = xξA + O(h̄) (9.26)

9.3 RG equation

The derivation of the RG equation once more starts with
the action principle

κ∂κΓ = ∆κ · Γ (9.27)

which tells us that ∆κ · Γ has to be an insertion of di-
mension less than or equal to four, invariant under charge
conjugation and in addition BRS symmetric due to (8.2).
In order to arrive at a more convenient form of the RG
equation we now introduce a new set of BRS symmetric
operators (see also [10]) representing the two- and three-
dimensional BRS symmetric classical field polynomials,
i.e. instead of (8.19) and

∫
δϕ̂0 we are going to use:

m∂m , fA∂ξA
Γ + [(χ∂ξ + χA∂ξA

)fA]∂χA
Γ

= sΓ (fA∂χA
Γ ) , (9.28)∫

δ

δϕ̂0
, f̃

∫
{Bϕ̂2 − c̄q2} + (χ∂ξ + χA∂ξA

)f̃
∫

c̄ϕ̂2

= sΓ (f̃
∫

c̄ϕ̂2)

Hence according to BRS invariance alone, ∆κ · Γ can be
decomposed into a sum of the BRS symmetric operators
(9.28), (8.20) and (the remaining four-dimensional opera-
tors in) (8.17):

κ∂κΓ =
(

−βκ
mm∂m − β̃κ

ξA
(fA∂ξA

+[(χ∂ξ + χA∂ξA
)fA]∂χA

)
+ακ

inv

∫
δϕ̂0 − βκ

mH
mH∂mH

−βκ
e e∂e + γκ

ANA + γ̃κ
BN (χ,χA)

B

+
2∑

i=1

{
γ̃κ

s,iN (χ,χA)
s,i + ˜̄γκ

s,iN̄ (χ,χA)
s,i + ˜̂γ

κ

s,iN̂ (χ,χA)
s,i

}
−β̃κ

ξ (fξ∂ξ + [(χ∂ξ + χA∂ξA
)fξ]∂χ)

)
Γ

+γ̃κsΓ (f̃
∫

c̄ϕ̂2) + ˜̃γ
κ
sΓ (f̃4

∫
c̄ϕ̂1ϕ̂2) (9.29)

Differentiating (9.29) with respect to ϕ1, setting all fields
equal to zero and making use of the normalization condi-
tion Γϕ1 = 0 (2.16) it immeadiately follows that:

ακ
inv ≡ 0 (9.30)

With this result in mind three further tests of (9.29) on
the physical normalization conditions (2.13) concerning
the mass normalizations of the Higgs, the vector and the
ghost directly imply

βκ
mH

≡ 0 , βκ
m ≡ 0 , β̃κ

ξA
≡ 0 (9.31)

to all orders of perturbation theory. Therefore due to the
physical normalization conditions the first four terms on
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the r.h.s. of (9.29) are absent and no β-function in connec-
tion with a (physical) mass appears in the RG equation.

In order to conclude the derivation of the RG equation
we now have to exploit rigid invariance of the theory: To
this end we first apply W gen (6.4) to the RG equation
(9.29) and then also use the rigid WI (6.8):

W genκ∂κΓ = [W gen, κ∂κ]Γ + κ∂κW genΓ (9.32)
= −(κ∂κW gen)Γ + κ∂κ(χ∆br + χA∆brA

)

This leads after some calculation to the final form of the
RG equation:(

κ∂κ + βκ
e e∂e + βκ

ξ ξ∂ξ − γκ
ANA

−γκ
BNB − γκ

s Ns − γ̂κ
s N̂s − γ̄κ

s N̄s

−γκ
1

∫ {
ϕ1

δ

δϕ1
− Y1

δ

δY1
+ ϕ̂1

δ

δϕ̂1
+ q1

δ

δq1

}
−(χ∂ξ + χA∂ξA

)
[∫ {

(γ̂κ
s + γκ

1 )ϕ̂1
δ

δq1

+γ̂κ
s ϕ̂2

δ

δq2
+ γκ

B c̄
δ

δB

}
− βκ

ξ ξ∂χ

])
Γ

= γ̄κ
s

∫
{q1Y1 + q2Y2} (9.33)

+(χ∂ξ + χA∂ξA
)
∫

{(γκ
s + γκ

1 )Y1ϕ1

+γκ
s Y2ϕ2 + γ̄κ

s (Y1ϕ̂1 + Y2ϕ̂2)}
with

γκ
1 = (κ∂κ + βκ

e e∂e + βκ
ξ ξ∂ξ)lnz (9.34)

In (9.33) we have already introduced the full β- and γ-
functions of the RG equation like in (9.13). Again, our
analysis shows that the β-function βκ

e and the anomalous
dimension γκ

A have to be ξ- and ξA-independent to all
orders of the loop expansion.

Additionally, rigid invariance (9.32) also imposes two
restrictions for the coefficient functions of the RG equa-
tion:

(κ∂κ + βκ
ξ ξ∂ξ + βκ

e e∂e)(zξ̂A
m

e
)

= −zξA
m

e
γ̄κ

s − zξ̂A
m

e
γκ

s

βκ
e − γ̂κ

s

= (κ∂κ + βκ
ξ ξ∂ξ + βκ

e e∂e)lnz (9.35)

Some further information about the coefficient functions
results from testing the RG equation on the gauge condi-
tion (2.4)6:

γκ
B = −γκ

A (9.36)
βκ

ξ = 2γκ
B = −2γκ

A

γκ
s = −γκ

B = γκ
A

Hence also γκ
B , γκ

s and βκ
ξ are fully gauge parameter inde-

pendent.
6 When deriving (9.36) we make use of (9.35)

Finally, one further relation emerges from the validity
of the local WI (7.5) and the normalization condition for
the coupling (7.7):

γκ
A = βκ

e (9.37)

Therefore, there is only one independent coefficient func-
tion appearing in the RG equation, namely the β-function
βκ

e , which has to be determined by an explicit calculation.

10 Conclusions

In the present paper we have examined the renormaliza-
tion of the Abelian Higgs model including BRS variations
of all the gauge parameters. The advantage of such an
extended procedure (when compared to the usual one)
is due to the fact that this procedure also yields full in-
formation about the gauge parameter dependence of 1-
PI Green functions automatically and in an easily man-
ageable way and therefore prohibits (just by construc-
tion) a wrong adjustment of counterterms which in turn
would spoil the gauge parameter independence of the S-
matrix. In the usual construction (i.e. without introducing
BR transforming gauge parameters) such a simple guid-
ing principle is missing and it is a quite troublesome and
heavily controllable task to adjust the counterterms cor-
rectly.

In this context we have shown that the normalization
conditions needed in order to fix the free parameters of
the theory cannot be chosen arbitrarily but instead have
to respect the restrictions dictated by the enlarged ST
identity. Especially we have proven that the physical on-
shell normalization conditions are in complete agreement
with those restrictions. Furthermore, the method of BRS
varying gauge parameters yields a well handleable tool for
controlling the range of “good” normalization conditions,
i.e. normalization conditions, which are not in contradic-
tion with the enlarged ST identity.

Some further results of the algebraic method we find
interesting, too:
The enlarged ST identity also allowed us to show that the
transversal part of the vector 2-point function has to be
completely gauge parameter-independent to all orders of
perturbation theory.
In the course of proving the local WI we found the ξ- and
ξA-independence of the overall normalization factor of the
matter transformations, a result, which gave rise to an
alternative and elegant possibility for fixing the coupling,
namely by requiring the local WI to be exact to all orders.

Finally, we derived the Callan-Symanzik and the renor-
malization group equation of the Abelian Higgs model
thereby showing among other things that the β-functions
β

(κ)
e , βmH

and β
(κ)
ξ as well as the anomalous dimensions

γ
(κ)
A , γ

(κ)
B and γκ

s have to be fully gauge parameter-inde-
pendent to all orders of the perturbative expansion. In the
same way we studied the ghost mass equation in order to
complete the analysis for the soft t’Hooft gauge parame-
ter.

The examination of the Abelian Higgs model, chosen
as the simplest example of a gauge theory with sponta-
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neous breakdown of symmetry, thus clearly shows of what
kind the considerations have to be and yields a hint what
kind of results could possibly be expecxted when the gen-
eral algebraic method will be applied to more complicated,
physical, models, especially to the standard model of elec-
troweak interactions.

Acknowledgements. The authors would like to thank K. Sibold
and E. Kraus for numerous helpful discussions and a critical
reading of the manuscript.

Appendix A

In the course of looking for the most general classical so-
lution of the χ- and χA-enlarged ST identity (4.1) the
most general solution of the gauge condition (2.4) and the
ordinary (that is χ- and χA-independent) ST identity

S(Γ̂ ) =
∫ {

∂µc
δΓ̂

δAµ
+ B

δΓ̂

δc̄
+

δΓ̂

δY

δΓ̂

δϕ
+ q

δΓ̂

δϕ̂

}
= 0

(A.1)

is needed. This solution was constructed in [9], and we
just present the result here:

Γ̂ gen
cl = Λ(Aµ, ϕ̄1, ϕ̄2) + Γg.f. + Γφπ + Γe.f. , (A.2)

with
ϕ̄i = ϕi − xiϕ̂i , i = 1, 2 . (A.3)

The part Λ = Λ(Aµ, ϕ̄1, ϕ̄2) describing the gauge field Aµ

and matter fields ϕi is given by:

Λ =
∫ {

−zA

4
FµνFµν +

1
2
z1(∂µϕ̄1)(∂µϕ̄1)

+
1
2
z2(∂µϕ̄2)(∂µϕ̄2)

+zee
√

z1
√

z2
√

zA ((∂µϕ̄1)ϕ̄2 − ϕ̄1(∂µϕ̄2))Aµ

+
1
2
z2
ee2zA(z1ϕ̄

2
1 + z2ϕ̄

2
2)AµAµ

+
1
2
zmm2zAAµAµ − √

z2
√

zmm
√

zA(∂µϕ̄2)Aµ

+zee
√

zmm
√

z1zAϕ̄1AµAµ

+
1
2
µ2(z1ϕ̄

2
1 + 2

√
z1

√
zmm

zee
ϕ̄1 + z2ϕ̄

2
2)

−1
8

zmH
m2

H

zmm2 z2
ee2(z1ϕ̄

2
1 + 2

√
z1

√
zmm

zee
ϕ̄1 + z2ϕ̄

2
2)

2
}

(A.4)

The gauge fixing part Γg.f. is of course nothing else but
(2.4):

Γg.f. =
∫ {

1
2
ξB2 + B∂A − eB (A.5)

×
[
(ϕ̂1 − ξA

m

e
)ϕ2 − ϕ̂2(ϕ1 − ξ̂A

m

e
)
]}

For the remaining two parts, the external field part Γe.f.

and the φπ-part Γφπ, one gets

Γe.f. =
∫

{Y1(−eze

√
z2

z1

√
zAϕ̄2c + x1q1) (A.6)

+Y2(eze

√
z1

z2

√
zA(ϕ̄1 +

√
zmm√
z1zee

)c + x2q2)}

and

Γφπ =
∫

{−c̄utc + ec̄(q1ϕ2 − q2(ϕ1 − ξ̂A
m

e
))

+ec̄(ϕ̂1 − ξA
m

e
)(zee

√
z1

z2

√
zA(ϕ̄1

+
√

zmm√
z1zee

)c + x2q2)

−ec̄ϕ̂2(−zee

√
z2

z1

√
zAϕ̄2c + x1q1)}. (A.7)

The free parameters in the general solution of the ST iden-
tity (A.1) are the wave function normalizations z1, z2 and
zA, the mass renormalizations of the vector and the Higgs-
particle, i.e. zm, zmH

, the coupling renormalization ze, the
parameters x1, x2, the parameter µ, the gauge parameters
ξ, ξA and the parameter ξ̂A. These parameters are not pre-
scribed by the ST identity (A.1) and therefore have to be
fixed by appropriate normalization conditions to all orders
(see Sect. 2).

Appendix B

The solution of (8.15) was given in [9]; first we present a
list of all terms of dimension less than or equal to three
which contribute to ∆̂0

λ:∫
Γ̂cl

δϕ1
= sχ=0=χA

Γ̂cl

∫
Y1 ,∫

δΓ̂cl

δϕ̂1
= sχ=0=χA

Γ̂cl

∫
{−xY1 − ec̄ϕ̄2} ,∫

{Bϕ̂2 − c̄q2} = sχ=0=χA

Γ̂cl

∫
c̄ϕ̂2 (B.1)

and ∫ {
z1ϕ̄

2
1 + 2z1vϕ̄1 + z2ϕ̄

2
2
}

In order to have a proper definition of this last invariant in
higher orders we are forced to introduce a further external
field ϕ̂0 of dimension two, even under charge conjugation
and invariant under BRS and rigid transformations, which
couples to this invariant. Therefore the above BRS sym-
metric term is replaced by:∫

δΓ̂cl

δϕ̂0
(B.2)
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The four-dimensional BRS symmetric terms contributing
to ∆̂0

λ are given by (i = 1, 2):∫ {
ϕi

δ

δϕi
− Yi

δ

δYi

}
Γ̂cl = sχ=0=χA

Γ̂cl

∫
Yiϕi ,∫ {

ϕ̂i
δΓ̂cl

δϕi
− Yiqi

}
= sχ=0=χA

Γ̂cl

∫
Yiϕ̂i ,

∫ {
B

δ

δB
+ c̄

δ

δc̄

}
Γ̂cl = sχ=0=χA

Γ̂cl

∫
c̄
δΓ̂cl

δB
,∫ {

ϕ̂i
δ

δϕ̂i
+ qi

δ

δqi

}
Γ̂cl = sχ=0=χA

Γ̂cl

∫
ϕ̂i

δΓ̂cl

δqi
,∫

{Bϕ̂1ϕ̂2 − c̄q1ϕ̂2 − c̄ϕ̂1q2} = sχ=0=χA

Γ̂cl

∫
c̄ϕ̂1ϕ̂2 ,

ξ∂ξΓ̂cl = sχ=0=χA

Γ̂cl
ξQ , (B.3)

and∫ {
A

δ

δA
+ c

δ

δc

}
Γ̂cl , mH∂mH

Γ̂cl , e∂eΓ̂cl (B.4)

Please note that due to (8.14) the coefficients with which
the terms in (B.2) and (B.4) appear in ∆̂0

λ are independent
of both ξ and ξA.

Appendix C

In this appendix we present the W gen-symmetric exten-
sions of the BRS invariant insertions

mH∂mH
, e∂e , fξ∂ξ + (χ∂ξ + χA∂ξA

)fξ∂χ . (C.1)

Just in order to compactify the notation in the formulae
below we introduce two ξ- and ξA-independent factors fH

and fe multiplying mH∂mH
and e∂e, respectively. (These

factors have to be independent of ξ and ξA due to the
results of Sect. 8.) Next we define (i = H, e, ξ):

∇i = mH∂mH
, e∂e, ∂ξ , (C.2)

∇̂i = −fi
1
z
∇i

∫
z

{
(ϕ1 − ξ̂A

m

e
)

δ

δϕ1

−Y1
δ

δY1
+ (ϕ̂1 − ξA

m

e
)

δ

δϕ̂1
+ q1

δ

δq1

}
−(χ∂ξ + χA∂ξA

)fi
1
z
∇i

×
∫

z(ϕ̂1 − ξA
m

e
)

δ

δq1
, (C.3)

ˆ̂∇iΓ = −(χ∂ξ + χA∂ξA
)fi

1
z
∇i

×
∫

zY1(ϕ1 − ξ̂A
m

e
) (C.4)

The W gen-symmetric extensions of the operators in (C.1)
then are given by:

fHmH∂mH
Γ → fHmH ∂̃mH

Γ

≡ fHmH∂mH
Γ + ∇̂HΓ + ˆ̂∇HΓ ,

fee∂eΓ → fee∂̃eΓ

≡ fee∂eΓ + ∇̂eΓ + ˆ̂∇eΓ , (C.5)

fξ∂ξΓ + [(χ∂ξ + χA∂ξA
)fξ]∂χΓ → ∂̃ξΓ

≡ fξ∂ξΓ + [(χ∂ξ + χA∂ξA
)fξ]∂χΓ + ∇̂ξΓ + ˆ̂∇ξΓ
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